38

Bioremediation for Sustainable Environmental Cleanup

Lookman, R., M. Verbeeck, J. Gemoets, S. Van Roy, J. Crynen and B. Lambié. 2013. In-situ zinc bioprecipitation by

organic substrate injection in a high-flow, poorly reduced aquifer. J. Contam. Hydrol. 150: 25–34. https://doi.

org/10.1016/j.jconhyd.2013.03.009.

Lovley, D. R. 1993. Dissimilatory metal reduction. Annu. Rev. Microbiol. 47(1): 263–290. https://doi.org/10.1146/

annurev.mi.47.100193.001403.

Miao, Z., M. L. Brusseau, K. C. Carroll, C. Carreón-Diazconti and B. Johnson. 2012. Sulfate reduction in groundwater:

characterization and applications for remediation. Environ. Geochem. Health. 34(4): 539–550. https://doi.

org/10.1007/s10653-011-9423-1.

Mihelcic, J. R. and J. B. Zimmerman. 2014. Environmental Engineering: Fundamentals, Sustainability, Design

(Second Edition). John Wiley & Sons, Inc.

Mitchell, J. K. and K. Soga. 2005. Chapter 8: soil deposits—their formation, structure, geotechnical properties, and

stability. pp. 195–250. In: Fundamentals of Soil Behavior (3rd Edition). John Wiley & Sons, Inc.

Mujah, D., M. Shahin and L. Cheng. 2016. State-of-the-art review of biocementation by microbially induced calcite

precipitation (MICP) for soil stabilization. Geomicrobiol. 34: 524–537. https://doi.org/10.1080/01490451.20

16.1225866.

Mwandira, W., K. Nakashima and S. Kawasaki. 2022. Chapter 13: stabilization/solidification of mining waste

via biocementation. pp. 201–209. In: D. C. W. Tsang and L. Wang [eds.]. Low Carbon Stabilization and

Solidification of Hazardous Wastes. Elsevier. https://doi.org/10.1016/B978-0-12-824004-5.00014-1.

Neculita, C. M. and G. J. Zagury. 2008. Biological treatment of highly contaminated acid mine drainage in batch

reactors: long-term treatment and reactive mixture characterization. J. Hazard Mater. 157(2): 358–366. https://

doi.org/10.1016/j.jhazmat.2008.01.002.

Nielsen, A. E. 1964. Kinetics of Precipitation. Pergamon Press.

Ossai, I. C., A. Ahmed, A. Hassan and F. S. Hamid. 2020. Remediation of soil and water contaminated with petroleum

hydrocarbon: a review. Environ. Technol. Innov. 17: 100526. https://doi.org/10.1016/j.eti.2019.100526.

Pachaiappan, R., L. Cornejo-Ponce, R. Rajendran, K. Manavalan, V. Femilaa Rajan and F. Awad. 2022. A review on

biofiltration techniques: recent advancements in the removal of volatile organic compounds and heavy metals

in the treatment of polluted water. Bioeng. 13(4): 8432–8477. https://doi.org/10.1080/21655979.2022.2050538.

Pagnanelli, F., C. C. Viggi, S. Mainelli and L. Toro. 2009. Assessment of solid reactive mixtures for the development

of biological permeable reactive barriers. J. Hazard. Mater. 170(2): 998–1005. https://doi.org/10.1016/j.

jhazmat.2009.05.081.

Reinertsen, S. A., L. F. Elliott, V. L. Cochran and G. S. Campbell. 1984. Role of available carbon and nitrogen

in determining the rate of wheat straw decomposition. Soil Biol. Biochem. 16(5): 459–464. https://doi.

org/10.1016/0038-0717(84)90052-X.

Sahinkaya, E., D. Uçar and A. H. Kaksonen. 2017. Bioprecipitation of metals and metalloids. pp. 199–231. In:

E. R. Rene, E. Sahinkaya, A. Lewis and P. N. L. Lens [eds.]. Sustainable Heavy Metal Remediation:

Volume 1: Principles and Processes. Springer International Publishing. https://doi.org/10.1007/978-3-319­

58622-9_7.

Sánchez-Andrea, I., J. L. Sanz, M. F. M. Bijmans and A. J. M. Stams. 2014. Sulfate reduction at low pH to remediate

acid mine drainage. J. Hazard. Mater. 269: 98–109. https://doi.org/10.1016/j.jhazmat.2013.12.032.

Sánchez-Andrea, I., A. J. M. Stams, J. Weijma, P. Gonzalez Contreras, H. Dijkman, R. A. Rozendal and D. B.

Johnson. 2016. A case in support of implementing innovative bio-processes in the metal mining industry.

FEMS Microbiol. Lett. 363(11): 1–4. https://doi.org/10.1093/femsle/fnw106.

Sharma, H. and K. Reddy. 2004. Geoenvironmental Engineering: Site Remediation, Waste Containment and Emerging

Waste Management Technologies. John Wiley & Sons.

Shmaefsky, B. R. 2020. Principles of phytoremediation. pp. 1–26. In: B. R. Shmaefsky [ed.]. Phytoremediation:

In-situ Applications. Springer International Publishing. https://doi.org/10.1007/978-3-030-00099-8_1.

Speece, R. E. 1983. Anaerobic biotechnology for industrial wastewater treatment. Environ. Sci. Technol.

17(9): 416–427.

Stephen, J. R. and S. J. Macnaughtont. 1999. Developments in terrestrial bacterial remediation of metals. Curr. Opin.

Biotechnol. 10(3): 230–233. https://doi.org/10.1016/S0958-1669(99)80040-8.

UNDP. 2022. Sustainable development goals: United Nations Development Programme. UNDP. https://www.undp.

org/sustainable-development-goals.

Vanbroekhoven, K., S. Van Roy, L. Diels, J. Gemoets, P. Verkaeren, L. Zeuwts, K. Feyaerts and F. van den Broeck.

2008. Sustainable approach for the immobilization of metals in the saturated zone: in situ bioprecipitation.

Hydrometall. 94(1–4): 110–115. https://doi.org/10.1016/j.hydromet.2008.05.048.

Waybrant, K. R., C. J. Ptacek and D. W. Blowes. 2002. Treatment of mine drainage using permeable reactive barriers:

column experiments. Environ. Sci. Technol. 36(6): 1349–1356. https://doi.org/10.1021/es010751g.